Traversing Spiral Decline (error propagation and surveying strategies)

Andrew Jarosz¹ \& Chris Moy²

${ }^{1}$ Retired academic, WA School of Mines (Curtin University)
2 Director, The Australian Institute of Mine Surveyors

Test Survey Objectives

- To test propagation of errors (direction and position) along a spiral decline
- To test different survey strategies and their impact on error propagation
- To develop the best surveying strategy to minimise error propagation

Wall Stations (Reference Points) Surveying Technique

- Initially proposed by B. McCormack in 2001^{1}
- Objectives:
- To improve safety and speed of reference points installation process
- To simplify stabilisation and access to reference points
- To simplify instrument setup (TP anywhere)
- WS technique is seen as replacement of classical traversing
- Use of resection (free stationing) as a method to establish position of a total station at TP
- It become possible, when coaxial total stations achieved high accuracy for distance and angular measurements

Reference: ${ }^{1}$ C, Wall Stations (Reference Points) - The Use of Resection to Replace Conventional Underground Traversing. $\underline{\text { http:// }}$ benchmarksoftware.com.au/downloads/Wall\ Stations.pdf. accessed August 2019

Test Surveys Setup

- Emulation of a spiral (circular) decline
- Radius 30m
- Width 6 m
- 12 Wall Stations - WS00 .. WS11 (positioned as hours on a clock)
- Distance between WS ~18m
- Local coordinate system
- Exact location of control points (WSOO WS11) surveyed from the centre - CRT (FL \& FR, 2 series)

Reference Stations (WS)

Instrumentation

- Total Station
- Model: Leica TCRA 1105plus
- Accuracies:
- Angle (Hz \& V): 5"
- Distance: $2 \mathrm{~mm}+2 \mathrm{ppm}$
- ATR: +-3"
- Leica Standard Prism (GPR1) with holder (GPH1) x4
- WS stems $\times 4$
- Tripod x3
- Target assembly (GRT144) x2

Resection / Free Stationing

Survey Scenarios Tested

- Case\#1: Simple resections (2BS, FL, one series of angles, acute triangle, TP close to one of the WS forming resection base)
- Case\#2: Simple resections (2BS, FL, one series of angles, $\sim 90^{\circ}$ triangle, TP close to one of the WS forming resection base)
- Case\#3: Simple resections (2BS, FL, one series of angles, acute triangle, TP at mid position between WS)
- Case\#4: Free stationing (3BS+TP, FL, one series of angles, acute triangles, TP close to one of the WS forming resection base)
- Case\#5: Simple resections (2BS, FL+FR, one series of angles, acute triangle, TP close to one of the WS forming resection base)
- Case\#6: Free Stationing (3BS) at the start and then Forced Centred Traverse (FL only, one series of angles, WS as sideshots)
- Case\#7: Free Stationing (4BS) at the start and then Forced Centred Traverse (FL + FR, two series of angles, WS as sideshots)

Case\#1 - Simple Resections (2BS, FL, acute triangles)

- Survey starts from the base WS00-WS01 (stations with known positions - coords)
- Instrument (TP) located close ($\sim 4 \mathrm{~m}$) to one of the wall stations (WSO1)
- Acute shape of the resection triangle
- Measurements:
- one series on angles, only one face (FL),
- 2 directions \& 2 distances to backsight stations (WS00 \& WS01)
- 2 directions \& 2 distances to foresight stations (WS02 \& WS03)
- Transfer of instrument to new position (after WSO3)
- Continuation of surveys until 2 full rounds are achieved

Resections (2BS, FL, acute triangles)

Case\#2 - Simple Resections (2BS, FL, $\sim 90^{\circ}$ triangles)

- Survey starts from the base WS00-WS01 (stations with known positions - coords)
- Instrument (TP) located close (~2.5m) to one of the wall stations (WSO1)
- Right angle resection triangle
- Measurements:
- one series on angles, only one face (FL),
- 2 directions \& 2 distances to backsight stations (WS00 \& WS01)
- 2 directions \& 2 distances to foresight stations (WS02 \& WS03)
- Transfer of instrument to new position (after WSO3)
- Continuation of surveys until 2 full rounds are achieved

Resections (2BS, FL, $\sim 90^{\circ}$ triangles)

Case\#3 - Simple Resections (2BS, FL, acute triangles, TP at mid position)

- Survey starts from the base WS00-WS01 (stations with known positions - coords)
- Instrument (TP) located at mid position between wall stations (WS01 \& WSO2)
- Acute shape of the resection triangle
- Measurements:
- one series on angles, only one face (FL),
- 2 directions \& 2 distances to backsight stations (WSOO \& WS01)
- 2 directions \& 2 distances to foresight stations (WSO2 \& WS03)
- Transfer of instrument to new position (between WS03 \& WSO4)
- Continuation of surveys until 2 full rounds are achieved

Resections (2BS, FL, acute triangles, TP at mid positions)

Case\#4 - Free Stationing (3BS+TP, FL, acute triangles)

- Survey starts from the base WS11-WS00-WS01 (3 stations with known positions - coords)
- Instrument (TP) located close to the last station (WS01)
- Acute shape of the resection triangle
- Measurements:
- Setup at the station TP1 (one series on angles, only one face (FL)),
- 3 directions \& 3 distances to backsight stations (WS11, WS00 \& WS01)
- 3 directions \& 3 distances to foresight stations (WSO2 \& WS03 and TP2)
- Transfer of instrument to the new position (TP2)

Case\#4 (cont.) - Free Stationing (3BS+TP, FL, acute triangles)

- Transfer of instrument to the new position (TP2)
- Measurements:
- Setup at the station TP2 (one series on angles, only one face (FL)),
- 4 directions \& 4 distances to backsight stations (WS01, TP1, WSO2 \& WS03)
- 3 directions \& 3 distances to foresight stations (WS04 \& WS05 and TP3)
- Transfer of instrument to the new position (TP3)
- Continuation of surveys until 2 full rounds are achieved

Case\#5 - Simple Resections (2BS, FL+FR, acute triangles)

- Survey starts from the base WS00-WS01 (stations with known positions - coords)
- Instrument (TP) located close ($\sim 4 \mathrm{~m}$) to one of the wall stations (WSO1)
- Acute shape of the resection triangle
- Measurements
- angles are measured using Face Left (FL) and Face Right (FR)
- 2 directions \& 2 distances to backsight stations (WSOO \& WS01)
- 2 directions \& 2 distances to foresight stations (WS02 \& WS03)
- Transfer of instrument to new position (after WSO3)
- Continuation of surveys until 2 full rounds are achieved

Resections (2BS, FL+FR, acute triangles)

Case\#6 - Forced Centred Traverse (FL only, WS as sideshots)

- Survey starts from the base WS00-WS01-WS02 (3 stations with known positions - coords)
- Instrument (STN1) located close to the last station (WSO2)
- Acute shape of the resection triangle
- Measurements:
- 3 directions \& 3 distances to backsight stations (WS00, WS01 \& WS02) - position and orientation of the first traverse station (STN1) by Free Stationing (one series on angles, only one face (FL)),
- Start of a traverse (STN1)
- Foresight on the next station (STN2)
- Sideshots on WSO3 \& WSO4
- Transfer of instrument to the new position (STN2) - forced centring
- Backsight on STN1 and Foresight on STN3
- 4 sideshots on WS03, WS04, WS05 \& WS06
- Continuation of surveys until 2 full rounds are achieved

Case\#7 - Forced Centred Traverse (FL+FR, 2 series, WS as sideshots)

- Survey starts from the base WS00-WS01-WS02-WS03 (4 stations with known positions - coords)
- Instrument (TP1) located between stations WS01 \& WS02
- Acute shape of the resection triangle
- Measurements:
- 4 directions \& 4 distances to backsight stations (WS00, WS01, WS02 \& WSO3) - position and orientation of the first traverse station (STN1) by Free Stationing (two series on angles, FL \& FR)
- Start of a traverse at TP1
- Foresight on the next station (TP2) (two series on angles, FL \& FR)
- Transfer of instrument to TP2 (forced centring) and backsight on TP1
- Sideshots on WS04 \& WS05 (one series, FL \& FR)
- Transfer of instrument to TP3 (forced centring), backsight on TP2 and foresight on TP4
- 4 sideshots on WSO4, WS05, WSO6 \& WSO7
- Continuation of surveys until 2 full rounds are achieved


```
FC Traverse (FL+FR, 2 Series, WS as sideshots)
FC Traverse (FL+FR, 2 Series, WS as sideshots)
```

80

- Positional Error [mm] Elev. Error [mm] Az. Error ["]

Comparison of Positional Errors

Positional Error [mm]

80

- Resections (2BS, FL, acute triangles)
\triangle Resection (2BS, FL+FR, acute triangles)
₹ Resections (2BS, FL, ~90 triangles)
ㅁ. Resections (2BS, FL, acute triangles, TP at mid positions)
\diamond Resections (3 BS +TPs, FL, acute triangles)
A FC Traverse (FL, WS as side-shots)
- FC Traverse (FL+FR, 2 Series, WS as sideshots)

Comparison of Az Errors

FC Traverse (FL+FR, 2 Series, WS as sideshots)

Impact of Initial Az Error

Impact of Initial Az Error

FC Traverse (FL+FR, 2 Series, WS as sideshots)

Impact of Position Error on Direction Error

Conclusions

- Positional \& Directional errors along a spiral decline are affected by two components:
- The initial survey linking the following survey structure (along a decline) to the starting control points (Wall Stations)
- Surveying technique applied for the transfer of position and direction along a decline
- The best results could be achieved using the following strategy:
- Free Stationing to 3 or more WS as the initial survey (linking survey). FL \& FR with angles measured minimum in two series. Coordinates and orientation of TP should be calculated by use of the Least Squares Adjustment (LSA).
- Special care should be applied to the initial survey, as the initial Az Error will be transferred (and magnified) to the all following control points.
- Use Forced Centring Traverse over temporary stations (TPs) to transfer position and direction along a decline to the next set of WS. WS are surveyed as side-shots from the traverse TPs.
- Surveys should be done using FL \& FR with angles measured minimum in two series.

